Bowsland Green - Multiplication and Division Calculation Policy

(

Use the area model to help pupils understand the size of the numbers they are using.
This links to them understanding the area of a rectangle.
The grid method offers a good transition from area model to the written method.

TTh	Th	H	T	O
	2	3	6	9
χ			3	8
1	8	9	5	2
	2	5	7	
7	1	0	7	0
1	2	2		
9	0	0	2	2
		1		

$2369 \times 38=90,022$

Division
aract Abstract

Pupils to use counters and sorting hoops (concrete or drawn) to start exploring arrays and sharing equally before progressing to drawing these in their books or on whiteboards.

In Year 1, pupils are not expected to record division formally and should focus on concrete and pictorial representations of sharing equally.

When dividing larger numbers, pupils can use manipulatives to use partitioning to support them. Part-models provide pupils with a clear written method that matches the concrete representation.

Place value counters and Base 10 are used to help pupils exchange one ten for ten ones.
Exchanging outside the place value grid will allow them to use the grid to share the resources equally after the exchange.

Place value counters and Base 10 are used to help pupils exchange one ten for ten ones.
Exchanging outside the place value grid will allow them to use the grid to share the resources equally after the exchange. Any resources left outside the grid represent the remainder.

Place value counters and Base 10 are used to help pupils exchange one ten for ten ones.
Exchanging outside the place value grid will allow them to use the grid to share the resources equally after the exchange.
Any resources left outside the grid represent the remainder.

		0	3	5	r	2	$1 \times 13=13$
1	3	4	5	7			$3 \times 13=39$
	-	3	9				$4 \times 13=52$ $5 \times 13=65$
			6	7			$6 \times 13=78$
			6	5			$8 \times 13=104$
				2			$\begin{aligned} 9 \times 13 & =117 \\ 10 \times 13 & =130 \end{aligned}$

$$
457 \div 13=35 r 2
$$

Pupils should write out the multiples to help them solve the calculation.
When a remainder is left at the end, pupils may either leave it or convert it to a fraction depending on the context of the question. Some questions may involve the quotient being rounded such as when interpreting the remainder to answer the question.

Mathematical vocabulary that all pupils should be exposed to:

Array - An ordered collection using counters, cubes or other items in rows and columns.

Commutative - Numbers can be added in any order.

Dividend - In division, the number that is divided.

Dividend - In division, the number that is divided by another number.

Exchange - To substitute a number for another on an equal value.
Factor - A number that multiplies by another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.
Product - The result of multiplying two numbers together.

Quotient - The result of division.
Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount.

